
Parallel Computing: a brief discussion

Marzia Rivi

What is parallel computing?
Traditionally, software has been written for serial
computation:

–  To be run on a single computer having a single core.
–  A problem is broken into a discrete series of instructions.
–  Instructions are executed one after another.
–  Only one instruction may execute at any moment in time.

Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem:

–  A problem is broken into discrete parts that can be solved
concurrently.

–  Instructions from each part executed simultaneously on
different cores.

Why parallel computing?
•  Save time and/or money:

–  in theory, more resources we use, shorter the time to finish, with

Who needs parallel computing?

R
es

ea
rc

he
r 1

 •  has a large number of
independent jobs (e.g.
processing video files,
genome sequencing,
parametric studies)

•  uses serial applications

High Throughput
Computing (HTC)
(many computers):
•  dynamic

environment
•  multiple

independent small-
to-medium jobs

•  large amounts of
processing over
long time

•  loosely connected
resources (e.g. grid) R

es
ea

rc
he

r 2

•  developed serial code and
validated it on small
problems

•  to publish, needs some
“big problem” results

High Performance
Computing (HPC)
(single parallel
computer):
•  static

environment
•  single large scale

problems
•  tightly coupled

parallelism
 R

es
ea

rc
he

r 3

•  needs to run large parallel
simulations fast (e.g.
molecular dynamics,
computational fluid
dynamics, cosmology)

How to parallelise an application?
Automatic parallelisation tools:
•  compiler support for vectorisation of operations (SSE and AVX)

and threads parallelisation (OpenMP)
•  specific tools exists but limited practical use
•  all successful applications require intervention and steering

Parallel code development requires:
•  programming languages (with support for parallel libraries, APIs)
•  parallel programming standards (such as MPI and OpenMP)
•  compilers
•  performance libraries/tools (both serial and parallel)

But…, more that anything, it requires understanding:
•  the algorithms (program, application, solver, etc.):

•  the factors that influence parallel performance

Task Parallelism

!"#$%&"'"(()(*#+%
!"#$%&'()#'*%+,-'.%#%//$/0+1'0+'2%+$&')3'.%#*034'*"$').$#%*0)3+')5'*"$'

%/4)#0*"16'

'

75'%3'%/4)#0*"1'0+'01./$1$3*$&'80*"'+$#0$+')5'03&$.$3&$3*').$#%*0)3+'*"$+$'
9%3'2$'+.#$%&'*"#):4"):*'*"$'.#)9$++)#+'

Data Parallelism

Dependencies

Parallel computing models

Concepts and Terminology
• Shared Memory

OpenMP

http://www.openmp.org

API instructing the compiler what can be done in parallel
(high-level programming).
•  Consisting of:

–  compiler directives
–  runtime library functions
–  environment variables

•  Supported by most compilers for Fortran and C/C++.

•  Usable as serial code (threading ignored by serial compilation).

•  By design, suited for data parallelism.

Application User

OpenMP - example
Objective: vectorise

http://www.mpi-forum.org/

MPI is a specification for a Distributed-Memory API designed
by a committee for Fortran, C and C++ languages.

•  Two versions:
– 

MPI implementation components

•  Libraries covering the functionality specified by the standard.
•  Header files, specifying interfaces, constants etc.

–

MPI - overview

•  Processes (MPI tasks) are mapped to processors (CPU cores).

•  Start/stop mechanisms:
–  MPI_Init() to initialise processes
–  MPI_Finalize() to finalise and clean up processes

•  Communicators:
–  a communicator is a collection (network) of processes
–  default is MPI_COMM_WORLD, which is always present and includes

all processes requested by mpirun
–  only processes included in a communicator can communicate

•  Identification mechanism:
–  process id: MPI_Comm_rank()
–  communicator size (number of processes): MPI_Comm_size()

MPI - communication
Inter-process communication (the cornerstone of MPI
programming):
•

Distributed vs shared memory paradigm
Which problems are suited to Distributed Memory Processing?

•  Embarrassingly parallel problems (independent tasks), e.g. Monte
Carlo methods.

•  Computation bound problems (heavy local computation with little data
exchange between processes).
–  models with

Accelerators - motivation
Moore’s Law (1965):
•  the number of transistors in CPU

design doubles roughly every 2

Accelerators – different philosophies

Design of accelerators optimized for
numerically intensive computation by
a massive fine grained parallelism:

•  many-cores (several hundreds)
•  leightweight threads and high

execution throughput
•  large number of threads to overcome

long-latency memory accesses.

Design of CPUs optimized for
sequential code and coarse
grained parallelism:

•  multi-core
•  sophisticated control logic unit
•  large cache memories to

reduce access latencies.

Accelerator

Accelerators - examples

NVIDIA Tesla K20X GPU
2688 cores
6GB GDDR5 memory
250 GB/sec memory bandwidth
3.95Tflops/sec of peak SP

Intel Xeon Phi 5110 MIC
60 cores
8GB GDDR5
320 GB/s memory bandwidth
240 HW threads (4 per core)
512-bit wide SIMD capability

Accelerators – programming model

Applications should use both CPUs and
the accelerator, where the latter is
exploited as a coprocessor:
•  Serial sections of the code are performed

by CPU (host).
•  The parallel ones (that exhibit rich amount

of data parallelism) are performed by
accelerator (device).

•  Host and device have separate memory
spaces: need to transfer data in a manner
similar to “one-sided” message passing.

Several languages/API:
•  GPU: CUDA, pyCUDA, OpenCL, OpenACC
•  Xeon Phi: OpenMP, Intel TBB, Cilk

GPU

Example – CUDA

void main()
{
 ….

OpenACC

ü Supported by CRAY and PGI (slightly
d i f f e r e n t i m p l e m e n t a t i o n s , b u t
converging) and soon GCC.

ü  “Easier” code development – supports
incremental development.

ü possible performance loss – about 20%
compared to CUDA.

ü 

Accelerators programming
•  Accelerators suitable for massively parallel algorithms and require

low-level programming (architecture bound) to have good
performances.

•  They can effectively help in reducing the time to solution. However
the effectiveness is strongly dependent on the algorithm and the
amount of computation.

•  The effort to get codes efficiently running on accelerators is, in
general, big, irrespectively of the programming model adopted.
However portability and maintainability of the code push toward
directive based approaches (at the expenses of some performance).

•  All the (suitable) computational demanding parts of the code should be
ported. Data transfer should be minimized or hidden. Host-Device
overlap is hard to achieve.

Hybrid parallel programming

Hybrid programming (MPI+OpenMP, MPI+CUDA) is a
growing trend.

•  Take the positive of all models.
•  Suits the memory hierarchy on “fat-nodes” (nodes with large memory

and many cores).
•  Scope for better scaling than pure MPI (less inter-node

communication) on modern clusters.

Giovanni Erbacci

Programmazione Ibrida MPI+OpenMP I

6

Questions?

