## FabSim

Derek Groen, Agastya Bhati, James Suter, James Hetherington, Stefan Zasada, Peter Coveney

> Centre for Computational Science, UCL Department of Computer Science, Brunel

### Computational research is tricky

We want to do work of "excellent" quality. Chart out problems we've never tackled before. Do computations of unprecedented size and complexity. Using state-of-the-art, high quality research production codes.

### The reality

Projects of limited size, limited duration.

PhD-ware, *Titanic*-ware.

Hofstadter's law.

"It always takes longer than you expect, even when

Why do we as academics suck so much, while industry frequently does pull it off to create something solid?

### The curious case of academic software

ESPResSo

(major CFD code developed in Germany)





### The curious case of academic software

Fluidity

(major CFD code developed in the UK)





### FabSim: aiming to mitigate Small Effort

Save time.

Automate frequently used patterns in computational research.

Provide quick one-liners to use patterns, or composite ones.

Prevent double-work, by curating data automatically. Make software for the user-developer, not the end-user.

### FabSim: an approach to mitigate Small Effort



### Simple commands

fab archer cold

fab <machine> <code\_name>:
 <config\_name>
fab <machine> fetch\_results

fab bluejoule lammps:h2osystem,\ cores=128,label=validation Compile the HemeLB code on ARCHER. Run <code\_name> with <config> on <machine\_name>. Fetch results from the runs from <machine\_name>. Run LAMMPS on BlueJoule to

### FabSim example



Source: Wan et al., 2015.

# Thank you for your time

This work was funded by the EU FP7 projects MAPPER and CRESTA, the EPSRC funded 2020 Science project and by the Qatar National Research Foundation.





## Clay

### Multiscale applications: Clay-polymer nanocomposites

Aim: Develop quantitative coarse-grained models of clay-polymer nanocomposites.

Uses:

Predict thermodynamically favourable states. Predict elasticity.

We require:

Accurate potentials. Realistic structures. Representative time scales.



Suter, Groen and Coveney, Adv. Mat. 27 (6) 966-984, 2015. Suter, Groen and Coveney, Nano Letters (ASAP), 2015.

### Nanocomposites







### What we can do with single scale models



#### Suter et al., 2009



Sinsawat et al., 2003

### Our multiscale approach



### Future Work

