
Verification of Fortran Codes
Wadud Miah (wadud.miah@nag.co.uk)

Numerical Algorithms Group

http://www.nag.co.uk/content/fortran-modernization-workshop

mailto:wadud.miah@nag.co.uk
http://www.nag.co.uk/content/fortran-modernization-workshop

Fortran Compilers

• Compilers seem to be
either high performant or
very good at error
checking;

• There is a spectrum in
between and compilers fall
somewhere in between;

• Clearly the GNU and Intel
compilers are mostly used,
but how good are they at
error checking?

Verification Features of Fortran Compilers

• Compiler vendors either focus their efforts on performance or good
verification features (or maybe neither);

• The two most commonly used compilers, namely Intel and GNU
Fortran, are only able to detect 53% of defects in the benchmark
suite;

• The NAG compiler is able to capture 91% of defects in the benchmark
suite.

http://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnostic-capabilities/

Usage of Verification Tools

• Only 11 (7%) out of 155 Fortran
developers are using verification
tools;

• Is there an over-reliance on

What Interests Fortran Programmers?

• There is anecdotal
evidence to suggest that
code verification is not
considered important
amongst Fortran
programmers;

• This could obviously affect
the quality of
computational science
codes.

Fortran Verification Workflow (1)

• Computational scientists obviously want correct code as well as fast
code. What is the answer?

• Use both error checking and high performance compilers in tandem
with automated verification tools;

• Static analysis tools still have limitations so the code still requires
runtime checks with a good error checking compiler, e.g. NAG;

• Unit tests should be built with the NAG compiler with optimisations
switched off. Use the following compiler flags with the NAG compiler:

nagfor -C=all -C=undefined -info -g -gline

Fortran Verification Workflow (2)

• Integration tests should also be built with the NAG compiler with
optimisations switched off;

• Once all tests have passed, then build with more performant
compilers such as the Intel, Cray or IBM compilers.

Verification
tools

NAG Fortran
compiler

Intel, IBM or
Cray compiler

Fast and
correct code

Rigorous standards
checking and runtime
checks

Static analysis checks -
CamFort, Forcheck, FPT

High performance
compilers

Fortran Verification Tools

• CamFort [1];

• FPT [2];

• Forcheck [3];

• NAG Fortran compiler [4];

• pFUnit is a unit testing framework [5];

• I will only very briefly discuss FPT, Forcheck and the NAG Fortran
compiler.

[1] https://github.com/camfort/camfort [2] http://www.simconglobal.com/ [3] http://www.forcheck.nl/
[4] https://www.nag.co.uk/nag-compiler [5] http://pfunit.sourceforge.net/

https://github.com/camfort/camfort
http://www.simconglobal.com/
http://www.forcheck.nl/
https://www.nag.co.uk/nag-compiler
http://pfunit.sourceforge.net/

Fortran Array Bug

• Spot the bug below:

real, dimension(3) :: eng, aero

do i = 1, 3 ! 1 = port, 2 = centre, 3 = starboard

aero = eng(i)

end do

! modern and correct version

aero(:) = eng(:)

• The FPT tool can detect the do loop bug.

Precision Bugs (1)

• The following code segments have bugs:

real(kind=REAL32) :: a, geom, v, g_p

a = geom * v ** (2/3) ! calculate surface area

g_p = 6.70711E-52

real(kind=REAL64) :: theta

real(kind=REAL32) :: x

x = 100.0_REAL64 * cos(theta)

Precision Bugs (2)

real(kind=REAL64) :: d

real(kind=REAL32) :: x, y

d = sqrt(x**2 + y**2)

• Compilers are generally not good at spotting precision bugs;

• Compilers are not very good at detecting mixed precision bugs but
the FPT and Forcheck tools can.

Forcheck Dummy Argument Checking

• Fortran code:

subroutine foo(a, b)

real :: a

real, optional :: b

Forcheck Dummy Argument Intent Checking

• Dummy arguments should always be scoped with the intent
keyword;

• Command:

forchk -intent arg_test.f90

• Analysis output:

B

**[870 I] dummy argument has no INTENT attribute

(INTENT(IN) could be specified)

Runtime Checking

• Static analysis checks are easy ways to detect obvious bugs but they
are ultimately very conservative. When they say there is a bug, they
are correct;

• Static analysis tools are limited in what they can achieve particularly
for large multi-scale multi-physics code where there can be variables
that are defined in complex IF statements;

• This requires runtime checks to ultimately check for potential bugs
with a comprehensive error checking compiler such as the NAG
Fortran compiler;

• The NAG Fortran compiler also prints helpful error messages to help
locate sources of bugs instead of the dreaded “segmentation fault”.

NAG Compiler Optional Argument Detection

• Compile command (if Forcheck cannot detect this):
nagfor -C=present arg_test.f90 -o arg_test.exe

• Fortran code:
call foo(a)

subroutine foo(a, b)

real, intent(out) :: a

real, intent(in), optional :: b

a = b**2

end subroutine foo

• Helpful runtime error message and not just segmentation fault:
Runtime Error: arg_test.f90, line 14: Reference to OPTIONAL
argument B which is not PRESENT

NAG Compiler Dangling Pointer Detection

• Build command:
nagfor -C=dangling p_check.f90 -o p_check.exe

• Fortran code:

real, dimension(:), allocatable, target :: vec

real, dimension(:), pointer :: vec_p

allocate(vec(1:100))

vec_p => vec; deallocate(vec)

print *, vec_p(:)

• Runtime output - NAG compiler is the only Fortran compiler that can check this:
Runtime Error: p_check.f90, line 12: Reference to dangling pointer
VEC_P

Target was DEALLOCATEd at line 10 of pointer_check.f90

NAG Compiler Undefined Variable Detection

• Compile command:

nagfor -C=undefined undef_test.f90 -o undef_test.exe

• Fortran code:

real, dimension(1:11) :: array

array(1:10) = 1.0

print *, array(1:11)

Runtime output:

Runtime Error: undef_test.f90, line 7: Reference to
undefined variable ARRAY(1:11)

Program terminated by fatal error

NAG Compiler Procedure Argument Detection

• Compile command:
nagfor -C=calls sub1.f90 -o sub1.exe

• Fortran code:
integer, parameter :: x = 12

call sub_test(x)

subroutine sub_test(x)

integer :: x

x = 10

end subroutine sub_test

• Runtime output:
Runtime Error: sub1.f90, line 13: Dummy argument X is
associated with an expression - cannot assign

NAG Compiler Integer Overflow Detection

• Compile command:
nagfor -C=intovf

Conclusion

• More needs to be done to make code verification in computational science
a mature practice just as it is in computer science;

• Develop a well-defined verification workflow and offer it as a service to the
academic computational science community in the UK. Verification as a

