Verification of Fortran Codes

Wadud Miah (wadud.miah@nag.co.uk)
Numerical Algorithms Group
http://www.naqg.co.uk/content/fortran-modernization-workshop

mailto:wadud.miah@nag.co.uk
http://www.nag.co.uk/content/fortran-modernization-workshop

Fortran Compilers

e Compilers seem to be
either high performant or
very good at error
checking;

e There is a spectrum in
between and compilers fall
somewhere In between,

e Clearly the GNU and Intel
compilers are mostly used,
but how good are they at
error checking?

Fortran compilers used

250

Verification Features of Fortran Compilers

e Compiler vendors either focus their efforts on performance or good
verification features (or maybe neither);

- - - oL - . I . O S P e — L -
— —— s e " - R Bt = e

[%=

e The two most commonly used compilers, namely Intel and GNU

Fortran, are only able to detect 53% of defects in the benchmark
suite;

* The NAG compiler is able to capture 91% of defects in the benchmark
suite.

http://www.fortran.uk/fortran-compiler-comparisons-2015/intellinux-fortran-compiler-diagnostic-capabilities/

Usage of Verification Tools

e Only 11 (7%) out of 155 Fortran
developers are using verification
tools;

e |s there an over-reliance on

What Interests Fortran Programmers?

IS 0T

| T T e
LR S S T

; HII}”””“

oy

- i

2

w—* There is anecdotal

evidence to suggest that
code verification Is not
considered important

~: amongst Fortran
£ programmers;

 This could obviously affect
- the quality of

computational science

F - . -
- = = -t -
21 P e COdeS-
=t Al Ay
- ToT=

Fortran Verification Workflow (1)

e Computational scientists obviously want correct code as well as fast
code. What is the answer?

 Use both error checking and high performance compilers in tandem
with automated verification tools;

o Static analysis tools still have limitations so the code still requires
runtime checks with a good error checking compiler, e.g. NAG;

e Unit tests should be built with the NAG compiler with optimisations
switched off. Use the following compiler flags with the NAG compiller:

nagfor -C=all -C=undefined -info -g -gline

Fortran Verification Workflow (2)

* Integration tests should also be built with the NAG compiler with
optimisations switched off;

 Once all tests have passed, then build with more performant
compilers such as the Intel, Cray or IBM compillers.

Static analysis checks - Rigorous standards High performance
CamFort, Forcheck, FPT checking and runtime compilers
checks

Fortran Verification Tools

« CamFort [1];

* FPT [2];

e Forcheck [3];

* NAG Fortran compiler [4];

 pFUNIt is a unit testing framework [5];

o | will only very briefly discuss FPT, Forcheck and the NAG Fortran
compiler.

[1] https://github.com/camfort/camfort [2] http://www.simconglobal.com/ [3] http://www.forcheck.nl/
[4] https://www.nag.co.uk/nag-compiler [5] http://pfunit.sourceforge.net/

https://github.com/camfort/camfort
http://www.simconglobal.com/
http://www.forcheck.nl/
https://www.nag.co.uk/nag-compiler
http://pfunit.sourceforge.net/

Fortran Array Bug

 Spot the bug below:

real, dimension(3) :: eng, aero

dor1 =1, 311 = port, 2 = centre, 3 = starboard
aero = eng(1)

end do

' modern and correct version

aero(:) = eng(:)

* The FPT tool can detect the do loop bug.

Precision Bugs (1)

 The following code segments have bugs:

real (kind=REAL32) :: a, geom, Vv, g p

a = geom * v ** (2/3) ! calculate surface area
gp = 6.70711E-52

real (kind=REAL64) :: theta
real (Kind=REAL32) :: X
X = 100.0 REAL64 * cos(theta)

Precision Bugs (2)

real (Kind=REAL64) :: d

real (Kind=REAL32) :: X, vy

d = sgrt(x**2 + y**2)

e Compilers are generally not good at spotting precision bugs;

e Compilers are not very good at detecting mixed precision bugs but
the FPT and Forcheck tools can.

Forcheck Dummy Argument Checking

e Fortran code:

subroutine foo(a, b)
real -: a
real, optional -: Db

Forcheck Dummy Argument Intent Checking

e Dummy arguments should always be scoped with the intent
keyword;

e Command.:

forchk -intent arg_test.f90

 Analysis output:

B

**[870 1] dummy argument has no INTENT attribute
(INTENT(CIN) could be specified)

Forcheck

Runtime Checking

» Static analysis checks are easy ways to detect obvious bugs but they
are ultimately very conservative. When they say there is a bug, they
are correct;

» Static analysis tools are limited in what they can achieve particularly
for large multi-scale multi-physics code where there can be variables
that are defined in complex IF statements;

* This requires runtime checks to ultimately check for potential bugs
with a comprehensive error checking compiler such as the NAG
Fortran compiler;

* The NAG Fortran compiler also prints helpful error messages to help
locate sources of bugs instead of the dreaded “segmentation fault”.

NAG Compiler Optional Argument Detection

* Compile command (if Forcheck cannot detect this):

nagfor -C=present arg test.f90 -0 arg test.exe
 Fortran code:

call foo(a)

subroutine foo(a, b)

real, intent(out) :: a
real, intent(in), optional :-: Db
a = b**2

end subroutine foo
 Helpful runtime error message and not just segmentation fault:

Runtime Error: arg test.f90, line 14: Reference to OPTIONAL
argument B which 1s not PRESENT

NAG Compiler Dangling Pointer Detection

 Build command:

nagfor -C=dangling p _check.f90 -o p_check.exe
 Fortran code:

real, dimension(:), allocatable, target :: vec
real, dimension(:), pointer :: vec p

allocate(vec(1:100))

vec p => vec,; deallocate(vec)

print *, vec p(:)

* Runtime output - NAG compiler is the only Fortran compiler that can check this:

5ggtgme Error: p _check.f90, line 12: Reference to dangling pointer

Target was DEALLOCATEd at line 10 of pointer_check.f90

NAG Compiler Undefined Variable Detection

e Compile command:

nagfor -C=undefined undef test.f90 -0 undef test.exe
e Fortran code:

real, dimension(1:11) :: array

array(1:10) = 1.0

print *, array(1:11)

Runtime output:

Runtime Error: undef test.f90, line 7: Reference to
undefined variable ARRAY(1:11)

Program terminated by fatal error

NAG Compiler Procedure Argument Detection

e Compile command:
nagfor -C=calls subl.f90 -0 subl.exe
e Fortran code:
integer, parameter :©: X = 12
call sub _test(x)
subroutine sub _test(x)
integer :-: X
x = 10
end subroutine sub test
e Runtime output:

Runtime Error: subl.f90, line 13: Dummy argument X IS
associated with an expression - cannot assign

NAG Compiler Integer Overflow Detection

e Compile command:
nagfor -C=i1ntovf

Conclusion

 More needs to be done to make code verification in computational science
a mature practice just as it is in computer science;

* Develop a well-defined verification workflow and offer it as a service to the
academic computational science community in the UK. Verification as a
service?

