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φ has a value of 0 when there is no association between the two values, that is, when the
probability of selecting a value of A is constant for any value of B.

2. Interdependence. In Appendix 1 we prove that Cramér’s φ(A, B) φ measures the linear
interpolation from flat to identity matrix (see Figure 1 for the idea). We can therefore refer to φ
as the best estimate of the population interdependent probability idp ≡ p(a ↔ b). This
intercorrelation is robust, i.e. it ‘gracefully dec
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We note the following.

1. Relative dependency dpR(B, A) is linear with x when p(a) is even.

2. Measures are ordered in size: Cadj > dpR(B, A) > φ > dpR(A, B).

3. dpR(A, B) (and therefore φ) converges to dpR(B, A) as p(b) becomes more even (tends to 1/k).

Whereas dpR measures the distance on the first parameter from the prior (and is thus directional
when a prior skew is applied to one variable only), φ is based on the root mean square distance of
both variables. Cadj appears to behave rather differently to φ, as the right hand graph in Figure 2
shows. Given that the only other bi-directional measure, φ, measures the interdependence of A and
B, there appears to be little advantage in adopting the less conservative Cadj.

Finally, for k = 2 the following equation also holds:

4. φ2 = dpR(A, B) × dpR(B, A).

We find an equality between a classical Bayesian approach to dependency and a stochastic
approach based on Pearson’s χ2 for one degree of freedom. The proof is given in Appendix 3.

This raises the following question: what does ‘directionality’ mean here?

Note that dpR
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6. A worked example

Figure 3 provides a demonstration of plotting
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Appendix 1. The best estimate of population interdependent probability is

Cramér’s φφφφ
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Appendix 2. Deriving 2 × 2 rule dependency

For a 2 × 2 table with a single degree of freedom, the following axioms hold.

A1. p(a2) = p(¬a1) = 1 – p(a1); p(a2 | bi) = p(¬a1 | bi) = 1 – p(a1 | bi),

A2. p(a1 | bi) – p(a1) = p(a2) – p(a2 | bi),

A3. [p(a1 | bi) < p(a1)] ↔ [p(a2) < p(a2 | bi)].

A1 is a consequence of the Boolean definition of A, A2 can be demonstrated using Bayes’ Theorem
and A3 is a consequence of A2. A2 further entails that row sums are equal, i.e. dpR(a1, B) =
dpR(a2, B).

Equation (5) may therefore be simplified as follows
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Applying Bayes’ Theorem (p(a1 | b2) ≡ p(b2 | a1) × p(a1) / p(b2)) and axiom A1:
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The first and third terms then simplify to [p(a1 | b1)p(b1)] / [(1 – p(a1))p(a1)], so
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Appendix 3. For a 2 × 2 table, φφφφ2 ≡≡≡≡ dpR(A, B) × dpR(B, A)

The proof is in three stages.

S
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STAGE 2. Converting to a+b+c+d notation.

The 2 × 2 χ2 statistic, and thus φ, may be represented simply in terms of four frequencies in the
table, a, b, c and d (note roman font to distinguish from a, a1, etc). The table is labelled thus, and N
≡ a+b+c+d:

b1 b2 Σ
a


