
Sensing Interpersonal Synchrony between Actors and
Autistic Children in Theatre Using Wrist-worn

Accelerometers

Jamie A Ward1, Daniel Richardson1, Guido Orgs2, Kelly Hunter 3, Antonia Hamilton 1

(1) University College London,(2) Goldsmiths,(3) Flute Theatre
London, UK. Correspondence: jamie@jamieward.net

ABSTRACT
We introduce a method of using wrist-worn accelerometers to
measure non-verbal social coordination within a group that
includes autistic children. Our goal was to record and chart the
children's social engagement – measured using interpersonal
movement synchrony – as they took part in a theatrical work-
shop that was speci�cally designed to enhance their social
skills. Interpersonal synchrony, an important factor of social
engagement that is known to be impaired in autism, is cal-
culated using a cross-wavelet similarity comparison between
participants' movement data. We evaluate the feasibility of
the approach over 3 live performances, each lasting 2 hours,
using 6 actors and a total of 10 autistic children. We show
that by visualising each child's engagement over the course of
a performance, it is possible to highlight subtle moments of
social coordination that might otherwise be lost when review-
ing video footage alone. This is important because it points
the way to a new method for people who work with autistic
children to be able to monitor the development of those in
their care, and to adapt their therapeutic activities accordingly.
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INTRODUCTION
Autism, or autism spectrum condition (ASC), refers to a range
of developmental conditions that are characterised by dif�-
culties with social interaction. People with ASC can struggle
with non-verbal communication, including the use of gaze,
imitation, and other social cues. These dif�culties might arise
during infancy, when ASC children are slower to grasp social
signals, and fail to imitate or copy the movements of others in
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the same way that neurotypical children do [3]. This creates a
barrier to both learning and social engagement.

An important measure of a person's social engagement is the
degree to which they move in synchrony with others. Interper-
sonal synchrony – the non-random temporal coordination of
two or more people [5] – is found to be less prevalent in ASC
than in neurotypicals. Motion-capture technology was used
to show this by measuring movement coordination (or lack
of) between interactants [8]. Yet most studies of this kind are
lab-based, and primarily focus on dyads rather than groups.

There are of course instances when even those with severe
autism are able to engage and interact socially. Indeed many
adults with ASC develop mechanisms to help them navigate
social situations. It follows that moments of improved in-
terpersonal synchrony do occur in ASC, however �eetingly.
Capturing these moments might allow us to pinpoint instances
of social engagement, both from the point of view of under-
standing the mechanisms at play, and as a way of charting an
individual's development.

Wearable sensing provides an opportunity to take research on
interpersonal synchrony and autism out of the lab and into
“the wild”. Body-worn accelerometers can be used to track
ASC children – and everyone they typically interact with – as
they go about their everyday life. The ecological richness of
such data comes at a cost to privacy.

We propose an alternative approach: using wearables to study



their parents and carers. Yet we do not know exactly why these
games work, or what the neural and psychological mechanisms
at play are. As a �rst investigation of this, we use wearable
sensing to record the movements of actors and ASC children
during a Flute performance, and use the data to chart their
interpersonal synchrony.

In this paper we present an approach to collecting physical
movement data in the challenging environment of a live the-
atrical performance involving autistic children. We describe
a novel application of cross-wavelet analysis for exploring
the interpersonal synchrony of up to 10 participants. We then
demonstrate how this information can be used as a measure of
social engagement to aid researchers studying autism, both as
a way of charting a child's development, and as a mechanism
for automatically annotating videos of long-term interaction.

Related Work
Interpersonal synchrony measures the dynamics of interaction
between people rather than the speci�c nature of their be-
haviours. It is more concerned with the temporal coordination
and shared rhythm between interactants, rather than how they
mirror, or imitate, one another [5]. It was originally studied
by developmental psychologists, with early work attempting
to quantify bodily synchrony by looking at stills of a movie
[4]. Thanks to advances in sensing technology, interpersonal
synchrony has become a topic of research in �elds such as
machine learning, robotics, and human-centered computing
[5]. When people move together in synchrony, they tend to
have greater rapport with one another [16]. Synchrony has
been shown to be an important component in enhancing the
success of joint goals [23]. And it has also been shown to
effect af�liation in human-robot interactions [13].

In ASD, correlations were found between the ability to syn-
chronise movement with others and sentence production [8].
The same work showed that ASD children are both less able
to synchronise socially with others, and that their manner
of movement when imitating is different. In another study
autistic children who were sat on rocking chairs next to their
caregivers were found to be less likely to rock in-phase than
neurotypical children [20].

Wearables are a promising tool for researching interpersonal
synchrony. The accelerometers built into Google Glass, for
example, were used to measure dyadic synchrony during con-
versation [17]. And [24] used wrist-worn sensors (the same
E4 devices used in the current work) to demonstrate how large
groups of people moving in sync can enhance group af�liation.

There is also much potential for wearable applications that
support and diagnose people with autism [6]. Google Glass
has been explored as a tool to help ASC children with facial
expression recognition [26]. Machine learning methods have
been applied to wearable sensor data to automatically recog-
nise stereotypical stimming behaviour in autistic participants
[2, 28]. Similarly, accelerometer-based features were used
to classify aggressive and self-harming behaviours in autism
[18]. The focus of our current work, however, is not to auto-
matically recognise speci�c behaviours, but rather to try and

Figure 1. Interacting with children, and actor-only performance.

uncover instances of interpersonal synchrony that might be
hidden behind those behaviours.

Earlier work measured coordinations in dyadic body move-



Figure 2. (Left) data from 6 actors and 4 children over ~2h Saturday
performance. Synchronisation gestures highlighted. (Right) E4 watch.



THE INTERACTION MATRIX
With a single variable representing each person's wrist,jaj, we
evaluate the similarity in movement between different com-
binations of pairings using CC and ACW. The process of
calculating CC and ACW is highlighted for 30s of data in
Figure 3. Acceleration data from two participants (actorB and
child k4) is compared to generate a cross-wavelet transform in
the time-frequency domain. This is averaged across frequen-
cies (y-axis of Figure 3-iii ) to give an indication of similarity
atany



Figure 3. (i) Five actors perform while children (and actor F) watch. (ii) Acceleration from actor B and child k4 over 30s. (iii) Cross-wavelet
spectrogram of this data. (iv) Average cross wavelet power (ACW), plotted alongside cross-correlation (CC, calculated using 5s sliding window). (v)
Interaction matrices for CC and ACW over 30s period. Note similarity in movement frequencies, but not in temporal correlation, betweenB and 4.

Figure 4. ACW interactions over 2h performances. Dotted squares show
main actor-child pairings.

The engagement plot reveals much about the dynamics of
this sequence. At time (a), for example, child3 andA work
together to play Titania. ActorD takes over as Bottom, and
tries to get child2 to join – but she is not interested, as shown
by the low engagement values (lighter colouring) for that child
in (a



Figure 5. Engagement over 2 minute sequence: actors C (as Bottom) and F (as Titania) demonstrate the Doyoyoying sequence,a) actor A and child 3
then work as Titania, with D trying to coax child 3 to play Bottom, b) both children fully commit to their roles, c) B then helps child 1 take on the role
of Titania (who manages a single Doyoyoying). (Center) ACW interaction matrix for the 2 minute scene. (Right) view from middle of the scene (b to c).

Figure 6. i) Engagement sequence of participants (Saturday). Dark ar-
eas indicate strong synchrony with at least one other person.ii ) Maxi-
mum engagement for actors vs. children, and their difference.iii ) Clas-
si�er decision (actors-only vs. interaction) compared to ground truth.
Dotted area shows correct detection of an actors-only scene.

Precision Recall AUC
Thursday .72 .64 .80
Friday .62 .65 .79
Saturday .73 .67 .84

Table 1. Event spotting results

(proportion of returned frames which are correct) and recall
(proportion of ground truth frames correctly detected). We also
show area-under ROC curve (AUC), a threshold-independent
measure of performance where 1 is perfect, 0.5 is random [7].

An AUC range of .79 to .84 indicates that a simple threshold-
based classi�er on engagement groupings can be suf�cient to
pick-out meaningful events from a long dataset.

DISCUSSION

Sensing in Practice
In a multi-person interaction like this, ideally everyone should
be wearing sensors. Unfortunately, consent to record sensor
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