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Introduction

Artificial neural networks are computational models of nervous systems. Natural
organisms, however, do not possess only nervous systems but also genetic
information stored in the nucleus of their cells (genotype). The nervous system is
part of the phenotype which is derived from this genotype through a process
called development. The information specified in the genotype determines aspects
of the nervous system which are expressed as innate behavioral tendencies and
predispositions to learn. When neural networks are viewed in the broader
biological context of Artificial Life they tend to be accompanied by genotypes
and to become members of  evolving populations of networks in which genotypes
are inherited from parents to offspring (Parisi, 1997).

Artificial neural networks can be evolved by using evolutionary algorithms
(Holland, 1975; Schwefel, 1995; Koza, 1992). An initial population of different
artificial genotype, each encoding the free parameters (e.g. the connection
strengths and/or the architecture of the network and/or the learning rules) of a
corresponding neural network, are created randomly. The population of networks
is evaluated in order to determine the performance (fitness) of each individual
network. The fittest networks are allowed to reproduce (sexually or a-sexually) by
generating copies of their genotypes with the addition of changes introduced by
some genetic operators (e.g., mutations, crossover, duplication). This process is
repeated for a number of generations until a network that satisfies the
performance criterion (fitness function) set by the experimenter is obtained (for a
review of methodological issue see Yao, 1993).

The genotype might encode all the free parameters of the corresponding
neural network or only the initial value of the parameters and/or other parameters
that affects learning. In the former case of the network is entirely innate and there
is no learning. In the latter networks changes both philogenetically (i.e. through
out generations) and ontogenetically (i.e. during the period of time in which they
are evaluated).

Evolution and development
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cases, all phenotypical characteristics are coded in an uniform manner so that the
description of an individual at the level of the genotype assumes the form of a
string of identical elements (such as binary or floating point numbers). The
transformation of the genotype into the phenotypical network is called genotype-
to-phenotype mapping.

In direct encoding schemes there is a one-to-one correspondence between
genes and the phenotypical characters subjected to the evolutionary process (e.g.
Miller et al., 1989). Aside from being biological implausible, simple one-to-one
mappings has several drawbacks. One problem, for example, is scalability. Since
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activation variability of the corresponding neurons was larger than a genetically-
specified threshold. This simple mechanism is based on the idea that sensory
information coming from the environment has a critical role in the maturation of
the connectivity of the biological nervous system and, more specifically, that the
maturation process is sensitive to the activity of single neurons (see Purves,
1994). Therefore the developmental process was influenced both by genetic and
environmental factors (i.e. the actual sequence of sensory states experienced by
the network influenced the process of neural growth).

Figure 1. Development of an evolved neural network. Top: The growing and branching process of
the axons. Bottom: the resulting neural network after removal of nonconnecting branches and the
elimination of isolated neurons and groups of interconnected neurons.
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This method allows the evolutionary process to select neural network
topologies that are suited to the task chosen. Moreover, the developmental
process, by being sensitive to the environmental conditions, might display a form
of plasticity. Indeed, as shown by the authors, if some aspects of the task are
allowed to vary during the evolutionary process, evolved genotypes display an
ability to develop into different final phenotypical structures that are adapted to
the current conditions.

Cellular Encodings

In natural organisms the development of the nervous system begins with a folding
in of the ectodermic tissue which forms the neural crest. This structure gives
origin to the mature nervous system through three phases: the genesis and
proliferation of different classes of neurons by cellular duplication and
differentiation, the migration of the neurons toward their final destination, and the
growth of neurites (axons, dendrites). The growing process described in the
previous section therefore characterizes very roughly only the last of these three
phases. A number of attempts have been made to include other aspects of this
process in artificial evolutionary experiments.

Cangelosi et al. (1994), for example, extended the model described in the
previous section by adding a cell division and migration stage to the already
existing stage of axonal growth. The genotype, in this case, is a collection of rules
governing the process of cell division (a single cell is replaced by two "daughter"
cells) and migration (the new cells can move in the 2D space). The genotype-to-
phenotype process therefore starts with a single cell which, by undergoing a
number of duplication and migration processes, produces a collection of neurons
arranged in a 2D space. These neurons grow their axons and establish connection
until a neural controller is formed (for a related approaches see Dellaert and Beer,
1994).

Gruau (1994) proposed a genetic encoding scheme for neural networks based
on a cellular duplication and differentiation process. The genotype-to-phenotype
mapping starts with a single cell that undergoes a number of duplication and
transformation processes ending up in a complete neural network. In this scheme
the genotype is a collection of rules governing the process of cell divisions (a
single cell is replaced by two "daughter" cells) and transformations (new
connections can be added and the strengths of the connections departing from a
cell can be modified). In this model, therefore, connection links are established
during the cellular duplication process.

The instructions contained in the genotype are represented as a binary-tree
structure as in genetic programming (Koza, 1992). During the genotype-to-
phenotype mapping process, the genotype tree is scanned starting from the top
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node of the tree and then following each ramification. The top node represents the
initial cell that, by undergoing a set of duplication processes, produces the final
neural network. Each node of the genotype tree encodes the operations that should
be applied to the corresponding cell and the two sub-trees of a node specify the
operations that should be applied to the two daughter cells. The neural network is
progressively built by following the tree and applying the corresponding
duplication instructions. Terminal nodes of the tree (i.e. nodes that do not have
sub-trees) represents terminal cells that will not undergo further duplications.
Gruau also considered the case of genotypes formed by many trees where the
terminal nodes of a tree may point to other trees. This mechanism allows the
genotype-to-phenotype process to produce repeated phenotypical structures (e.g.
repeated neural sub-networks) by re-using the same genetic informations. Trees
that are pointed to more than once, in fact, will be executed more times. This
encoding method has two advantages: (a) compact genotypes can produce
complex phenotypical networks, and (b) evolution may exploit phenotypes where
repeated sub-structures are encoded in a single part of the genotype. Since the
identification of sub-structures that are read more than once is an emergent result
of the evolutionary process, Gruau defined this method Automatic Definition of
Neural Subnetworks (ADNS) (Gruau, 1994).

Discussion

Artificial evolution can be seen as a learning algorithm for training artificial
neural networks. From this point of view, one distinctive feature is the limited
amount of feedback required. Supervised  learning algorithms require immediate
and detailed desired answers as a feedback. Reinforcement learning algorithms
require less - only a judgement of right or wrong which should not be necessarily
immediate. Viewed as a learning algorithm, artificial evolution requires still less -
only an overall evaluation of the performance of the network over the entire
evaluation period. A second distinctive feature is that any parameter of the neural
network (e.g. the connection strengths, the network topology, the learning rules,
the transfer function of the neurons) can be subjected to the evolutionary process.

Although systematic comparison between artificial evolution and other
algorithms are not been done yet, it is reasonable to claim that artificial evolution
tend to produce better results when detailed feedback is not available. This is the
case, for example, of a neural networks that should control mobile robots (Nolfi
and Floreano, 2000). In this case in fact, although the experimenter can provide a
general evaluation of how much the behavior of a robot approximates the desired
behavior, he or she cannot usually indicate what the robot should do each time
step to produce such a desired behavior. Moreover artificial evolution might result
more effective in those cases in which certain features of the network (such as the
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network topology or the transfer functions) that cannot be properly set by hand
are crucial. Artificial evolution, in fact, provide a way to co-adapt different type
of parameters.

The analogy with natural evolution however can also be considered more
strictly. In this case the evolutionary process is not seen as an abstract training
algorithm but as a process that mimics some of the key aspects of the evolutionary
process in nature. From this point of view neural networks tend to be viewed as a
part of a population of artificial organisms that adapt autonomously by interacting
with the external environment.
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been provided by Hinton and Nowlan (1987). The authors considered a simple
case in which (a) the genotype of the evolving individuals consists of 20 genes
that encode the architecture of the corresponding neural networks, and (b) only a
single architecture (i.e. only a single combination of gene values) confers added
reproductive fitness. Individuals have a genotype with 20 genes that can assume
two alternative values (0 or 1). The only combination of genes that provide a
fitness value above 0 consists of all ones. In this extreme case, the probability of
finding the good combination of genes would be very small given that the fitness
surface looks like a flat area with a spike in correspondence of the good
combination. Indeed, on such a surface, artificial evolution does not perform
better than random search. Finding the right combination is like looking for a
needle in a haystack. The fitness surface is a metaphor often used to visualize the
search space on an evolutionary algorithm. Any point on the search space
corresponds to one of the possible combinations of genetic traits and the height of
each point on the fitness surface corresponds to the fitness of the individual with
the corresponding genetic traits.

The addition of learning simplify significantly the evolutionary search. One
simple way to introduce learning is to assume that, in learning individual, genes
can have three alternative values [0, 1, and ?] where question marks indicate
modifiable genes whose value is randomly selected within [0, 1] each time step of
the individuals' lifetime. By comparing learning and non-learning individuals one
can see that performance increases throughout generations much faster in the
former than in the latter. The addition of learning, in fact, produces an
enlargement and a smoothing of the fitness surface area around the good
combination that, in this case, can be discovered much more easily by the genetic
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providing a mean to master changes that occur too fast to be tracked by the
evolutionary process. However, as we will see in this section, the combination of
learning and evolution deeply alter both processes so that, in individuals that
evolve and learn, adaptive characteristics emerge as the result of the interaction
between evolutionary and lifetime adaptation and cannot be traced back to only
one of the two processes.

Nolfi and Parisi (1997), evolved neural controllers for a small mobile robot
that was asked to explore an arena of 60 x 20 cm surrounded by walls. The robot
was provided with 8 infrared sensors that could detect walls up to a distance of
about 4 cm and two motors that controlled the two corresponding wheels. The
colors of the walls switched from black to white and viceversa each generation.
Given that the activity of the infrared sensors is highly affected by the color of the
reflecting surface (white reflect much more that black walls), to maximize their
exploration behavior, evolved robots should modify their behavior on the fly. In
the environment with dark walls, in fact, robots should move very carefully when
sensors are activated given that walls are detected only when they are very close.
In the environment with white walls, on the contrary, robots should begin to avoid
walls only when the sensors are strongly activated in order to explore also the area
close to the walls.

Individuals learn during lifetime by means of a self-generated teaching
signals. The genotype of the evolving individuals encoded the connection
strengths of two neural modules: a teaching module that each time step receives
the state of the sensors as input and produce a teaching signal as output and an
action module that receives the state of the sensors as input and produce motor
actions as output. The self-generated teaching signal is used to modify the
connection strengths of the action module (for a similar architecture see also
Ackley and Littman, 1991). This implies that not only the initial behavior
produced by the evolving individuals but also what individuals learn is the result
of the evolutionary process and is not determined by the experimenter.

Evolved robots displayed an ability to discriminate the two types of
environments and to modify their behavior accordingly thus maximizing their
exploration capability. The analysis of the obtained results revealed that this
ability resulted from a complex interaction between the evolutionary and learning
process. For example, evolved individuals displayed an inherited ability to behave
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Other experiments conducted by co-evolving two competing populations of
predator and prey robots (Nolfi and Floreano, 1998) emphasized how lifetime
learning might allow evolving individuals to achieve generality, i.e. the ability to
produce effective behavior in a variety of different circumstances. Predators
consisted of small mobile robots provided with infrared sensors and a linear
camera with a view angle of 36° with which they could detect the prey. Prey
consisted of mobile robots of the same size provided only with infrared sensors
but that had a maximum available speed set to twice that of the predators.
Predators were selected for their ability to catch prey while prey were selected for
their ability to escape predators.

What is interesting about this experimental situation is that, given that both
populations changes throughout generations, predators and prey are facing ever-
changing and potentially progressively more complex challenges. Interestingly
the authors observed that in this situation, evolution alone displayed severe
limitations and progressively more effective solutions could be developed only by
allowing evolving individuals to adapt on the fly through a form of lifetime
learning. Indeed, any possible fixed strategy was able to master different type of
competitors and therefore only by combining learning and evolution the authors
were able to synthesize individuals able to deal with competitors adopting
qualitatively different strategies. Indeed, by evolving learning individuals, the
authors observed the emergence of predators able to detect the current strategy
adopted by the prey and to modify their behavior accordingly.

Other advantages

Floreano and Urzelai (in press) conducted a set of experiments in which the
genotype of the evolving individuals encoded the learning properties of the
neurons of the corresponding neural network. These properties included one of
four possible hebbian learning rules, the learning rate, and the sign of all the
incoming synapses of the corresponding neuron. When the genotype is decoded
into a neural controller, the connection strengths are set to small random values.
As reported by the authors, after some generations, the genetically specified
configuration of learning rules tend to produce changes in the synaptic strengths
that allow individuals to acquire the required competencies through lifetime
learning. By comparing the results obtained with this method with a control
experiment in which the strength of the synapses were directly encoded into the
genotype, the authors observed that evolved controllers able to adapt during
lifetime can solve certain tasks faster and better than standard non-adaptive
controllers. Moreover they demonstrated that their method scales up well to large
neural architectures.
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process (e.g., neural networks trained with supervised methods) learning is
usually accomplished by ignoring the characters of the individual prior to learning
(which are typically generated at random), in evolving plastic individuals learning
exploits such starting conditions. Moreover, when the learning process itself (i.e.
what it is learn during lifetime) is subjected to evolution and not determined in
advance, learning does not necessarily tend to incorporate the right solution to the
problem but rather it tends to pull the learning individual in a direction that, given
the initial state of the individual, maximizes the chances of acquiring adaptive
characters.

References

Ackley, D.H., and M.L. Littman, 1991. Interaction between learning and
evolution, in Proceedings of the Second Conference on Artificial Life, (C.G.
Langton et. al eds.),  Reading, MA: Addison-Wesley, pp. 487-509.

Belew, R.K., J. McInerney J., and N.N. Schraudolph N.N., 1992. Evolving
networks: using the genetic algorithm with connectionistic learning, in
Proceedings of the Second Conference on Artificial Life, (C.G. Langton et. al
eds.), Reading, MA: Addison-Wesley.

Di Paolo, E.A., 2000. Homeostatic adaptation to inversion in the visual field and
other sensorimotor disruptions, in From Animals to Animats 6. Proceedings
of the VI International Conference on Simulation of Adaptive Behavior, (J-A
Meyer, A. Berthoz, D. Floreano, H.L. Roitblat, and S.W. Wilson eds.),
Cambridge, MA: MIT Press, pp. 440-449.

Floreano, D., and J. Urzelai, in press. Evolving robots to face unpredictable
change, Robotics and Autonomous Systems.



Nolfi, Learning and Evolution in Neural Networks 8

Nolfi, S., 1999. How learning and evolution interact: The case of a learning task
which differs from the evolutionary task, Adaptive Behavior, 2:231-236.

*Nolfi, S., and D. Floreano, 1999. Learning and evolution, Autonomous Robots,
1: 89-113.

Nolfi S., and D. Floreano, 1998. Co-evolving predator and prey robots: Do ‘arm
races’ arise in artificial evolution?, Artificial Life,  4:311-335.

Nolfi, S., and D. Parisi, 1997. Learning to adapt to changing environments in
evolving neural networks, Adaptive Behavior, 1:75-98.

Nolfi, S., J.L. Elman, and D. Parisi, 1994. Learning and evolution in neural
networks, Adaptive Behavior, 1:5-28.

Todd, P.M., and G.F. Miller, 1991. Exploring adaptive agency II: simulating the
evolution of associative learning,  in From Animals to Animats. Proceedings
of the First International Conference on Simulation of Adaptive Behavior, (J.
A. Meyer and S.W. Wilson eds.), Cambridge, MA: MIT Press.


