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3.2 Free Clocks

We will now attempt to make a measurement of the time-of-arrival. In order to do so,
we will need a clock. An ideal clock is linear in time. l.e., the position of the clock’s
pointer should be proportional to the time ¢. It is not hard to see that an ideal clock can

be represented by the Hamiltonian
Heoor = Py . (340)

To read the time of the clock, we measure the coordinate y conjugate to Py. Using
the Heisenberg equations of motion we see that the variable y reads the correct parameter

time ¢ found in the Schrodinger equation.

y(t) —y(ty) = _i/[Ya Heiock]dt

= t—t (3.41)

The Hamiltonian for this clock is unbounded from above and below, nonetheless,
using a sufficiently massive particle, we can approximate the ideal situation to arbitrary

accuracy ' . We write p = (p)+9
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From (3.41) we see that in order to use this clock to read the time, we need to know
the initial position of the clock’s dial y(¢y) and then subtract this from our final reading of
y. Quantum mechanics puts no limitation on how accurately this clock can be measured.
If we want to accurately infer the time from the final reading of the clock then the clock
must initially be prepared in a state with a very small uncertainty in y. At some later
point, we can measures the coordinate y(¢;) to any degree of accuracy we wish to infer
the time from y(ty) — y(to). If initially dy was very small, then we know that the time
is given by the final reading of y. However, if initially the state of the clock had a large
spread in y, then the time e finally obtain will be inaccurate by an amount dy. This

means that for this clock, the inaccuracy in the time measurement is given by
0T = dy (3.43)

If we simply want to use this clock to read the time, then there are no restrictions on
how accurate the clock can be. So far, nothing prevents us from making the initial state
of the clock’s pointer as close to an eigenstate of y(ty) as we desire. However, since y(to)
and H,, do not commute (and cannot commute if the clock is to operate properly),
the smaller the uncertainty in y(ty), the greater the uncertainty in Hgoe. We will see
that if we want to use this clock to measure the time of an event, then we will encounter
the limitation given by (3.39). We will need to ensure that initially the position of the
clock is uncertain in order for our measurements of the time of an event to succeed.

The reason for this is that since y is conjugate to Hyoer = Py, accurate clocks (which
are narrow in y) have a large spread in P,. This means that in general the energy of
an accurate clock can take on fairly large values. For an infinitely accurate clock the
energy will almost always be infinite. Accurate clocks therefore, have a large energy
uncertainty, and this makes them very hard to use to measure the time of an event.

This is because accurate clocks are usually so energetic that they need a large amount
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of energy to turn them off. To measure the time-of-arrival of a particle, the particle
itself will have to turn off the clock when it arrives — the external observer cannot supply
any energy since she does not know when to turn the clock off. If the clock is much

more energetic than the particle, then it will be impossible for the particle to turn off
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3.3.1 Measurement with a clock

The simplest model which describes a direct interaction of a particle and a clock [16],

without additional “detector” degrees of freedom, is described by the Hamiltonian

1
H = %P,f +0(—x)Py. (3.44)

Here, the particle’s motion is confined to one spatial dimension, z, and 6(z) is a step

function. The clock’s Hamiltonian is represented by Py, and the time is recorded on the
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On the other hand, in quantum mechanics the uncertainty relation dictates a strong
back-reaction, i.e. in the limit of Ay = Aty — 0, p, in (3.45) must have a large uncer-

tainty, and the state of the particle must be strongly affected by the act of measuring.
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’2“—72,: + pt. Continuity of ¢, requires that

2k
Ay = —
! k+q
k—q
Ap = —— 3.51
R k+q’ ( )

where ¢ = k% + 2mp = /2m(Ey, + p).

The solution of the Schrodinger equation is

ey =N [ dk [ dpi(p)g(k)bm(a,v.0), (352

where N is a normalization constant and f(p) and g(k) are some distributions. For

example, with

flp) = e~ Mv* (P—po)’

g(k) = e Da(k—ko)*+ikzo_ (3.53)

and xy > 0, the particle is initially localized on the left (z < 0) and the clock (with

probability close to 1) runs. The normalization in eq. (3.52) is thus N? = A;r%y. By

choosing py ~ 1/A,, we can now set the the clock’s energy in the range 0 < p < 2/A,,.
Let us first show that in the stationary point approximation the clock’s final wave

function is indeed centered around the classical time-of-arrival. Thus we assume that

A, and A, are large such that f(p) and g(k) are sufficiently peaked. For z > 0, the

integrand in (3.52) has an imaginary phase

4

0 = qv + kx, + py — — — pt. (3.54)
2m
da o . .
o = 0 implies ) )
q(Ko q(ko)t
Tpeak(P) = — ko To + — (3.55)
and % = 0 gives
mx
ypeak(k) =t—-—-. (356)

qo
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Hence at & = ¢4 the clock coordinate y is peaked at the classical time-of-arrival

_mxo

(3.57)

To see that the clock yields a reasonable record of the time-of-arrival, let us consider

further the probability distribution of the clock

P, Y)aso = [ dala > 0,9,0)1 (3.58)

In the case of inaccurate measurements with a small back-reaction on the particle A, ~ 1.

The clocks density matrix is then found (see Appendix B) to be given by:

1 _(y—t0)2
P(Y,Y)>0 = ——=e 7 (3.59)
2my(y)

where the width is y(y) = Ay® + (222)? + (5%;)? As expected, the distribution is

centered around the classical time-of-arrival t. = z,m/k,. The spread in y has a term

due to the initial width Ay in clock position y. The second and third term in 7(y) is

_m_

due to the kinematic spread in the time-of-arrival ﬁ = i

and is given by % where
dz(y)* = Az® + (57%;)?. The y dependence in the width in z arises because the wave
function is spreading as time increases, so that at later y, the wave packet is wider. As a
result, the distribution differs slightly from a Gaussian although this effect is suppressed
for particles with larger mass.

When the back-reaction causes a small disturbance to the particle, the clock records
the time-of-arrival. What happens when we wish to make more accurate measurements?

Consider the exact transition probability T = %\Aﬂz, which also determines the proba-

bility to stop the clock. The latter is given by

1Pt [mig_m] (360
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Since the possible values obtained by p are of the order 1/A, = 1/Aty, the probability

to trigger the clock remains of order one only if
Epéts > 1. (3.61)

Here 0t4 stands for the initial uncertainty in position of the dial y of the clock, and is
interpreted as the accuracy of the clock. Ej can be taken as the typical initial kinetic
energy of the particle.

In measurements with accuracy better then 1/E} the probability to succeed drops
to zero like /E}0t4, and the time-of-arrival of most of the particles cannot be detected.
Furthermore, the probability distribution of the fraction which has been detected depends
on the accuracy dt, and can become distorted with increased accuracy. This observation
becomes apparent in the following simple example. Consider an initial wave packet that is
composed of a superposition of two (Gaussians centered around k = ki and k = ko >> k4.
Let the classical time-of-arrival of the two Gaussians be t; and %, respectively. When
the inequality (3.61) is satisfied, two peaks around ¢; and ¢, will show up in the final
probability distribution. On the other hand, for %’1? > 0tg > %’2?, the time-of-arrival of
the less energetic peak will contribute less to the distribution in y, because it is less likely
to trigger the clock. Thus, the peak at ¢; will be suppressed. Clearly, when the precision
is finer than 1/E}, we shall obtain a distribution which is considerably different from that

obtained for the case 6t4 > 1/E) when the two peaks contribute equally.

332 T



Chapter 3. Phmsical Clocks and Time-of-Arrival 41

trigger without including the clock:

(67

1
Htri_qger = —Pi + 9

5 (14 0,)d(x). (3.62)
The particle interacts with the repulsive Dirac delta function potential at z = 0, only
if the spin is in the | 1,) state, or with a vanishing potential if the state is | {,). In
the limit @ — oo the potential becomes totally reflective (Alternatively, one could have

considered a barrier of height o? and width 1/a.) In this limit, consider a state of an

incoming particle and the trigger in the “on” state: |¢))| 1,). This state evolves to
1
D12 — 7 YR} Ta) + |11)] da) |, (3.63)
where g and 1, are the reflected and transmitted wave functions of the particle, re-
spectively.

The latter equation can be rewritten as

S0 (m) + [90) + 51 L) () — [9)) (364

Y

Since 1, denotes the “on” state of the trigger, and |, denotes the “off” state, we
have flipped the trigger from the “on” state to the “off” state with probability 1/2 2.
Although this model only works half the time, the chance of success does not depend in
any way on the system, and in particular, on the particle’s energy. Furthermore, one can
construct models where a detector is triggered almost all the time [35], although with
some energy dependence in the probability of triggering.

So far we have succeeded in recording the event of arrival to a point. We have no infor-

mation at all on the time-of-arrival. It is also worth noting that the net energy exchange

between the trigger and the particle is zero, i.e.. the particle’s energy is unchanged.
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The eigenstates of the Hamiltonian in the basis of o, are

6zk¢x + QSLTefsz:c .
U, (z) = . e, (3.66)
¢L‘L€_Zkiz
for z < 0 and .
Prre®™\
Ur(z) = . e, (3.67)
gbmezkl;c

for x > 0. Here ky = \/2m(E — p) = /2mE), and k|, = vV2mE = /2m(E + p).

Matching conditions at z = 0 yields

2ky _ ky
mu k
PRt = 35y (3.68)
me — (L+7)
k ky
k
brL = —((prr — 1 L , 3.69
R ki(( t ) % e Z_I) ( )
and
PL, = PRy (3.70)
bt = ¢rr — 1. (3.71)
We find that in the limit o — oo the transmitted amplitude is
VE
Or, = —Prt k (3.72)

- VE+VE +p
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3.3.3
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There is however one limiting case in which the method does seem to succeed. Consid-
er a narrow wave peaked around k£ with a width dk. To first order in dk, the probability

T, that the particle is successfully boosted is given by

Ty ~1— —. .
1 . (3.80)

Therefore in the special case that ‘2—'“ << 1, the transition probability is still close to one.
If in this case we known in advance the value of k£ up to dk << k, we can indeed use the
booster to improve the bound (3.61) on the accuracy.

The reason why this seems to work in this limiting case is as follows. The probability of
flipping the particle’s spin depends on how long it spends in the magnetic field described
by the a term in (3.73). If however, we know beforehand, how long the particle will
be in this field, then we can tune the strength of the magnetic field () so that the
spin gets flipped. The requirement that dk/k << 1 is thus equivalent to having a small
uncertainty in the “interaction time” with this field. In some sense, the measurement is
possible, because we know the particle’s momentum before hand. Of course, if we have
prior knowledge of the particle’s momentum, then we could just measure x and argue that
this allows us to calculate the time of arrival through ¢4 = mz/p. We therefore believe
that the reason the measurement procedure described above works in this limiting case
is because it assumes prior knowledge of the particle’s momentum, and we do not believe
that one could improve it so that it works for all states. These “booster” measurements
cannot be used for general wave functions, and even in the special case above, one still

requires some prior information of the incoming wave function.

3.3.4 Gradual triggering of the clock

In order to avoid the reflection found in the previous two models, we shall now replace

the sharp step-function interaction between the clock and particle by a more gradual
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transition.
When the WKB condition is satisfied

d\(x)

—e<<1
dz ¢

where \(z)™? = 2m[E, — V (z)], the reflection amplitude vanishes as
~ exp(—1/¢)

Solving the equation for the potential with a given € we obtain

1 1
2me? z2

Ve($) = FEy—

47

(3.81)

(3.82)

(3.83)

Now we observe that any particle with E' > Ej also satisfies the WKB condition (3.81)

above for the
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The problem is however that the final value of ¢ — y does not always correspond to

the time-of-arrival since it contains errors due to the affect of the potential V() on the
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The time-of-arrival can hence be measured provided that Erdt >> 1. On the other hand,
when the detector’s accuracy is 6t < 1/F, the particle still triggers the clock. However
the measured quantity, A, no longer correspond to the time-of-arrival. Again, we see
that when we ask for too much accuracy, the particle is strongly disturbed and reading

of the clock has nothing to do with the time-of-arrival of a free particle.

3.3.5 General considerations

We have examined several models for a measurement of time-of-arrival and found a
limitation,

dta > 1/Ey, (3.91)

on the accuracy that t4 can be measured. Is this limitation a general feature of quantum
mechanics?

First we should notice that eq. (3.91) does not seem to follow from the uncertainty
principle. Unlike the uncertainty principle, whose origin is kinematic, (3.91) follows from
the nature of the dynamic evolution of the system during a measurement. Furthermore
here we are considering a restriction on the accuracy (not uncertainty) of a single mea-
surement. While it is difficult to provide a general proof, in the following we shall indicate
why (3.91) is expected to hold under more general circumstances.

Let us examine the basic features that gave rise to (3.91). In the toy models considered
in Sections 3.3.1 and 3.3.2, the clock and the particle had to exchange energy p, ~ 1/6t 4.
As a result, the effective interaction by which the clock switches off, looks from the point
of view of the particle like a step function potential. This led to “non-detection” when
(3.91) was violated.

Can we avoid this energy exchange between the particle and the clock? Let us try to

deliver this energy to some other system without modifying the energy of the particle.
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For example consider the following Hamiltonian for a clock with a reservoir:

2

Py
om + 0(_X)Hc + Hyes + ‘/;eso(x) (392)

H =

The idea is that when the clock stops, it dumps its energy into the reservoir, which may
include many other degrees of freedom, instead of delivering it to the particle. In this
model, the particle is coupled directly to the clock and reservoir, however we could as

well use the idea of Section 3.3.2 above. In this case:

_Px2+9(1+ 15(%) + ~(1 4+ ) Ho + Hyos + ~(1 — 0.}V (3.93)
= 2m 2 Oy 2 Oy c res 2 Oz)Vres- .

H

The particle detector has the role of providing a coupling between the clock and reservoir.

Now we notice that in order to transfer the clock’s energy to the reservoir without
affecting the free particle, we must also prepare the clock and reservoir in an initial state
that satisfies the condition

H,— Vs =0 (3.94)

However this condition does not commute with the clock time variable y. We can measure
initially y — R, where R is a collective degree of freedom of the reservoir such that
[R, V;es] = 4, but in this case we shall not gain information on the time-of-arrival y
since R is unknown. We therefore see that in the case of a sharp transition, i.e. for a
localized interaction with the particle, one cannot avoid a shift in the particle’s energy.
The “non-triggering” (or reflection) effect cannot be avoided.

We have also seen that the idea of boosting the particle “just before” it reaches the
detector, fails in the general case. What happens in this case is that while the detection
rate increase, one generally destroys the initial information stored in the incoming wave
packet. Thus although higher accuracy measurements are now possible, they do not

reflect directly the time-of-arrival of the initial wave packet.






